

www.akitainnovations.com

Fluorescent Dyes and Reporters Akita Innovations

Expertise

Akita Innovations performs research and product development for U.S. government and commercial customers. Akita's expertise includes synthesis of small molecules and polymers, membranes & coatings, chemicals and materials with special optical absorbance and luminescence, as well as chemical and biochemical sensors. We perform scale-up and production from mg to kg levels.

In Billerica, MA; equipped for chemical synthesis and chemical & optical characterization

Customers & partners

FLIR

Tufts

UNIVERSITY

MASSACHUSETTS LIFE SCIENCES CENTER

1852

Absorbing & fluorescing dyes

Dyes are organic and organometallic (structures proprietary)

Particular experience with NIR Dyes

500

400

600

Wavelength (nm)

- Emit in 'physiological window' in NIR
- Easily excited by powerful, inexpensive NIR lasers
- Low fluorescence yield (energy gap law) an issue

Intensity (counts) x10⁶

2

300

• Large Stoke's shifts possible, challenging in NIR

700

2000

800

Dye modifications to shift, enhance, or quench fluorescence

Index #	λ _{max} (nm)
456	800
594	810
638	818
493	830
489	838
669	850
573	861
350	871
582	880
581	890
609	900
428	911
592	918
501	945
335	953

Example narrow-band NIR absorber dye wavelengths

Example of 532 nm absorbing dyes designed for high fluorescence (red) or minimal fluorescence (green), in injection-molded polycarbonate

Absorbers (high VLT) also made

Using CIE1931 Illuminant C; PLT is photopic (daytime) transmittance, SLT is scotopic (dark-adjusted eye) transmittance; spectra scaled to 532 nm absorbance of 4.0 (left) or 785 nm absorbance of 3.0 (right)

Analyte Sensitive Fluorophores

- pH
- Oxygen
- lons
- Explosives
- Chemical agents

No explosive \rightarrow with explosive

Nitroaromatic explosive-sensitive conjugated polymer manufactured by Akita team (MIT invented, licensed and marketed by FLIR Systems)

Dyes in/on media

- Micro/nanospheres (polymer, silica)
- Thin polymer films
- Membranes
- Covalently linked to polymers
- Bulk plastic (injection molded, extruded)

